Search results

1 – 2 of 2
Article
Publication date: 13 September 2019

Zirui Jia and Zengli Wang

Frequent itemset mining (FIM) is a basic topic in data mining. Most FIM methods build itemset database containing all possible itemsets, and use predefined thresholds to determine…

Abstract

Purpose

Frequent itemset mining (FIM) is a basic topic in data mining. Most FIM methods build itemset database containing all possible itemsets, and use predefined thresholds to determine whether an itemset is frequent. However, the algorithm has some deficiencies. It is more fit for discrete data rather than ordinal/continuous data, which may result in computational redundancy, and some of the results are difficult to be interpreted. The purpose of this paper is to shed light on this gap by proposing a new data mining method.

Design/methodology/approach

Regression pattern (RP) model will be introduced, in which the regression model and FIM method will be combined to solve the existing problems. Using a survey data of computer technology and software professional qualification examination, the multiple linear regression model is selected to mine associations between items.

Findings

Some interesting associations mined by the proposed algorithm and the results show that the proposed method can be applied in ordinal/continuous data mining area. The experiment of RP model shows that, compared to FIM, the computational redundancy decreased and the results contain more information.

Research limitations/implications

The proposed algorithm is designed for ordinal/continuous data and is expected to provide inspiration for data stream mining and unstructured data mining.

Practical implications

Compared to FIM, which mines associations between discrete items, RP model could mine associations between ordinal/continuous data sets. Importantly, RP model performs well in saving computational resource and mining meaningful associations.

Originality/value

The proposed algorithms provide a novelty view to define and mine association.

Details

Data Technologies and Applications, vol. 54 no. 3
Type: Research Article
ISSN: 2514-9288

Keywords

Article
Publication date: 12 May 2023

Hongliang Yu, Zhen Peng, Zirui He and Chun Huang

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and…

113

Abstract

Purpose

The purpose of this paper is to establish a maturity evaluation model for the application of construction steel structure welding robotics suitable for the actual situation and specific characteristics of engineering projects in China and then to assess the maturity level of the technology in the application of domestic engineering projects more scientifically.

Design/methodology/approach

The research follows a qualitative and quantitative analysis method. In the first stage, the structure of the maturity model is constructed and the evaluation index system is designed by using the ideas of the capability maturity model and WSR methodology for reference. In the second stage, the design of the evaluation process and the selection of evaluation methods (analytic hierarchy process method, multi-level gray comprehensive evaluation method). In the third stage, the data are collected and organized (preparation of questionnaires, distribution of questionnaires, questionnaire collection). In the fourth stage, the established maturity evaluation model is used to analyze the data.

Findings

The evaluation model established by using multi-level gray theory can effectively transform various complex indicators into an intuitive maturity level or score status. The conclusion shows that the application maturity of building steel structure welding robot technology in this project is at the development level as a whole. The maturity levels of “WuLi – ShiLi – RenLi” are respectively: development level, development level, between starting level and development level. Comparison of maturity evaluation values of five important factors (from high to low): environmental factors, technical factors, management factors, benefit factors, personnel and group factors.

Originality/value

In this paper, based on the existing research related to construction steel structure welding robot technology, a quantitative and holistic evaluation of the application of construction steel structure welding robot technology in domestic engineering projects is conducted for the first time from a project perspective by designing a maturity evaluation index system and establishing a maturity evaluation model. This research will help the project team to evaluate the application level (maturity) of the welding robot in the actual project, identify the shortcomings and defects of the application of this technology, then improve the weak links pertinently, and finally realize the gradual improvement of the overall application level of welding robot technology for building steel structure.

Details

Engineering, Construction and Architectural Management, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 0969-9988

Keywords

1 – 2 of 2